POLQ 2 | Lesson 1 | Making Connections (Factoring with Symbols) Solutions

Solutions for the Factoring with Symbols practice:

(SPECIAL FACTORING PATTERNS NOTED)

  1.  \((\#-!)(\#+!)\)  Difference of Squares
  2. \((\#+4) (\#-7)\)
  3. \((@+3)^2\) Perfect Square Trinomial
  4.  \((∂+2) (3∂ +2)\)
  5.  \((F(x) – 4)(F(x) + 2)\)
  6.  \((\sin x – \cos x) (\sin x +\cos x)\) Difference of Squares
  7. \((\sec B – \cos B) (\sec B^2 +\sec B \cos B +\cos B^2)\)
  8. \(8((a – 3)- 4)^2 \)  Perfect Square Trinomial
  9. \((\cos t -\sin t)(\cos t + \sin t)(\cos t^2+ \sin t^2)\)  Difference of Squares
  10. \((F(x) – 1)(F(x) + 1)\)  Difference of Squares
  11. \((Ω – 1)(Ω + 1)\) Difference of Squares
  12. \(\&(\& + %)\)
  13. \((4x + 1)(x – 1)\)
  14. \(((x + 3) – 1)((x + 3 )+ 8)\)
  15. \(\tan t(\tan t – 5)\)
  16. \((96-$)(96+$)\)  Difference of Two Squares
  17.  \(( ◊-Θ )(◊^2 + ◊Θ  +Θ ^2)\)  Difference of Cubes
  18. \(((y-1)+ (x+2))( (y-1) – (x+2))\) Difference of Squares
  19.  \(((x-3) +3)((x-3)-3)\)  Difference of Squares
  20.  \(((3x+9) +3)((3x+9)-3)\) Difference of Squares
  21.   \(($+1) ($-1)\) Difference of Squares
  22. \(((x+ 1) – 4)^2\) Perfect Square Trinomial
  23. \((\& – 9)(\& + 3)\)
  24. \(4(48^2 -74 -399)\)
  25. \(((Θ + 1) – 7)((Θ + 1) + 4)\)
  26. \((a + 2)((a+ 2) – 1)((a + 2) + 1)\) Difference of Squares
  27. \((y – 1)^2((y – 1)^2 – 5)\)
  28. \((\sin A + \cos A)(\sin A^2 – \sin A \cos A + \cos A^2)\) Sum of Cubes
  29. \((\sin x + \cos x)-(\sin x + \tan x))((\sin x + \cos x)+ (\sin x + \tan x))\) Difference of Squares
  30. \((θ^2 +Θ^2)(θ- Θ)(θ+Θ)\) Difference of Squares

Return to Making Connections (Factoring with Symbols)

Continue to Lesson 2: Completing the Square to Solve Quadratic Equations 

%d bloggers like this: