1) \(x^2+6x+8\)
\(x^2\) | \(6x\) | \(8\) | |
\(x\) | \(x^3\) | \(6x^2\) | \(8x\) |
\(-3\) | \(-3x^2\) | \(-18x\) | \(-24\) |
2) \(x-3\)
\(x\) | \(-3\) | |
\(x^2\) | \(x^3\) | \(-3x^2\) |
\(-5x\) | \(-5x^2\) | \(15x\) |
\(-14\) | \(-14x\) | \(42\) |
3) \(x^2+x-6\)
\(x^2\) | \(x\) | \(-6\) | |
\(x\) | \(x^3\) | \(x^2\) | \(-6x\) |
\(7\) | \(7x^2\) | \(7x\) | \(-42\) |
Return to Practice (Dividing using Generic Rectangles)